抽拉式光纤终端盒光纤波导有一个重要参数,即归化频率。其表达式为了解光纤传输功率在纤芯包层中的分配是有实际意义的。对于某一模式来说,在理想情况下,其电磁场能量应完全被封闭在纤芯中,沿轴向传输。但实际上,在光纤的纤芯与包层的交界面处,电磁场并不为零,因此,光纤中传输的能量(用功率来表示)并非全部包含在纤芯中,纤芯的直径不能反映光纤中光能量的分布(如图2-15所示),于是提出了模场直径的概念。光纤中传播的模式是由于在光纤中传播的光波是由子午射线、斜射线构成的光波,还有由不规则的界面反射来的光波,这些分布指数s光波在纤芯中互相干涉,在光纤截面上形成各种各样的电磁场结构形式,这就是模式,或简称模。
抽拉式光纤终端盒结构参数
抽拉式光纤终端盒主要特点
光具有波动性光的波动性可以从光的干涉、光的衍射和光的偏振等现象得到证明。利用光的电磁理论,把光看作连续的电磁波,成功地说明了光在传播过程中的反射、折射、干涉、衍射等宏观现象。3.光的性揭开光的秘密的探索一直没有停止。光除了波动性之外,还具有粒子性。初这个观点引起怀疑者的惊讶。但是,康普顿的真空中小型轻量螺旋桨演示,却非常让人信服,螺旋桨的一边涂黑(有高吸收能力),另一边是亮的(有高反射能力),光会使它产生机械的旋转,这仅用波动理论是无法解释的。19世纪末和20世纪初,科学实验深入到微观领域,在一系列新的实验事实面前,光的电磁理论遇到了巨大困难,如它无法解释黑体辐射、光电效应、康步的探索。
抽拉式光缆终端盒操作说明
在FTTH建设中,由于光缆被安放在拥挤的管道中或者经过多次弯曲后被固定在接线盒或插座等具有狭小空间的线路终端设备中,所以FTTH用的光缆应该是结构简单、敷设方便和价格便宜的光缆。因此,一些有名的制造厂商纷纷开展了抗弯曲单模光纤的研究。为了规范抗弯曲单模光纤产品的性能,ITU-T于2006年12月发布了ITU-TG657“接入网用弯曲G657光纤具有良好的抗弯曲性能,使其适用于光纤接入网,包括位于光纤接入网终端的建筑物内的各种布线。2009年12月发布了修订后的第二版本,在新版本的标准建议中,按照是否与G652光纤兼容的原则,将G657光纤划分成了A大类和B大类光纤,同时按照较小可弯曲半径的原则,将弯曲等级分为1,2,3三个等级,其中1对应10mm较小弯曲半径,2对应7.5mm较小弯曲半径,3对应5mm较小弯曲半径。结合这两个原则,将G.657光纤分为了四个子类,G657.A1、G657.A2、 G657.B2和G657.B3光纤,如表2-1所示。
抽拉式光纤终端盒内部结构
在FTTH建设中,由于光缆被安放在拥挤的管道中或者经过多次弯曲后被固定在接线盒或插座等具有狭小空间的线路终端设备中,所以FTTH用的光缆应该是结构简单、敷设方便和价格便宜的光缆。因此,一些有名的制造厂商纷纷开展了抗弯曲单模光纤的研究。光是一种频率非常高的电磁波,而光纤本身是一种介质波导,因此因此,光在光纤中的传输理论是十分复杂的。要想一体地了解它,需要应用电磁场理论、波动光方面的知识。作为一个光纤通信系统工作者,无需对光纤的传输理论进行深入探讨与学习.为了便于理解,我们从几何光学的角度来讨论光纤的导光原理,这样会更加直观、形象、易懂。更何况对于多模光纤而言,由于其几何尺寸远远大于光波波长,所以可把光波看作一条光线来处理,这正是几何光学处理问题的基本出发点。人[285AIT2D,现在问题出现了:折射光线和反射光线的方向是什么呢?为了得到答案,我们需要对特定角度确定的方向进行观察:B是入射角,0是反射角,B是折射角。
抽拉式光纤终端盒详细说明
如果光波的振动方向始终不变,只是光波的振幅随相位改变,这样的光称为线偏振光,如图2-9(e)和图2-9(d)所示。从普通光源发出的光微身中担火不是偏振光,而是自然光,它具有一切可能的振动方向,对光的传播方向是对称的,即在垂直于传播方向的平面内,无论哪一个方向的振动都不比其他方向占优势,如图2-9(a)所示。实际上,我们可以用两个振动方向相互垂直、相位上相互单独的线偏振光来代替自然光,并且这两个线偏振光的光强等于自然光的总光强的一半。在研究问题时使用这种方法可以得到完全相同的结果。自然光在传播的过程中,由于外界的影响,在各个振动方向的光强不相同,某一个振动方向的光强比其他方向占优势,这种光称为部分偏振光,如图2-9 (b)所示。
抽拉式光纤终端盒产品优点
足连续变化,渐变型光纤导光原理是利用光的全反射和折制断变型光纤纤芯折射于正张型的曲线向前传播,如使光线在其中以一条近似图2-14所示。由于不同模式的光线分别在层外面上按折制丰定律产生折射,进入低折射来层中表点因此,光的行进方向与变小。同样的过程不断发生,直至光在某一使光改变方向,朝中心较高的折射率层行进。这进方向与光纤轴方向所构成的角度在各折射事层中每折射一次,其值就加大次较后到达中心折射率较大的地方。这些角度是光线和与边界垂直线之间的角度。它们之间的关系由光射入的介质决定。斯涅耳定律给出了定义这些光线方向的规则。当光从折射率较大的介质(如玻璃)进入折射率较小的介质(如空气)时,会出现什么情况呢?如图2-8所示,当入射角θ(见图中虚线箭头)达到定值时,折射角(见图中虚线简头)等于90",光不再进入第二种介质(本例中是空气),这时入射角被称为临界角Q。如果我们继续增加入射角使0>0,所有的光将反射回入射介质(见图中实线简头),这现象被称为全反射现象。2.光的偏振光属于横波,即光的电磁场振动方向与传播方向垂直。
抽拉式光纤终端盒产品应用
模场直径是指描述单模光纤中光能集中程度的参量,模场直径越小,通过光纤横截面的能量密度就越大。当通过光纤的能量密度过大时,会引起光纤的非线性效应,造成光纤通信系统的光信噪府店,比降低,大大影响了系统的性能。因此,对于传输光纤而言,模场直径(或有效面积)越大越好。能量在包层中所占比例的大小和该模式的归一化频率V有关。当V远离截止频率越大时,它的能量将越聚集在纤芯中:当V越趋近截止频率V。时,跑到包层中的能量越多。对于多模光纤来说,V比较大,当所有的模式受到同等激励时光纤的几何特性与光缆施工有着紧密的关系,光纤的几何参数直接影响到光纤的连接损元,在施工中, 对光纤进行配纤就是为了降低连接损耗。对于多模光纤的连接,是靠裸纤的外径对准来实现的:对于单模光纤是靠纤芯对准来实现连接的。无论是多模光纤还是单模光开,都对芯直径、包层直径、纤芯/包层同心度、不圆度和光纤题曲度提出了严格要求。